

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note
http://sp.utia.cz

Design Time and Run Time Resources
for Zynq Ultrascale+ TE0808-04-15EG-1EE

with SDSoC 2018.2 Support
Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout

kadlec@utia.cas.cz xpohl@utia.cas.cz kohoutl@utia.cas.c

Revision history

Rev. Date Author Description
0 11.04.2019 J. Kadlec Initial draft
1
2

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz
mailto:kohoutl@utia.cas.c

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

ii

Table of Contents
1 Introduction .. 1
2 Create SDSoC platform for Zynq Ultrascale+ board ... 2
3 Configuration of the PetaLinux 2018.2 ... 6
4 Configuration of the Debian 9.8 ... 8
5 Create the final SDSoC 2018.2 platform package ...10
6 Compile HW accelerator by the SDSoC 2018.2 compiler ..10
7 Video processing demo with Full HD HDMI Video In/Out ..16
8 Inter-cloud connectivity based on the Arrowhead framework ..19
9 Installation of Arrowhead Framework Services on RPi3 ..20
10 Install Arrowhead-f support on Zynq Ultrascale+ module ..20
11 Install Arrowhead-f C++ Provider on Zynq Ultrascale+ module20
12 Install Arrowhead-f C++ Consumer on Zynq Ultrascale+ module20
13 Test the Zynq Ultrascale+ Consumer and Producer ..21
14 Producer with real temperature measurement on Zynq Ultrascale+ module21
15 Package content ...26
References ..27
Disclaimer ...27

Table of Figures
Figure 1: TE0808-03-15EG-1EE on TEBF0808-04 carrier with Imageon HDMI I/O FMC 1
Figure 2: The Zynq Ultrascale+ TE0808-03-15EG-1EE module and RaspberryPi 3B 2
Figure 3: The initial Vivado design. It defines the SDSoC 2018.2 platform. 4
Figure 4: hdmi_in serves for input of Full HD HDMI from camera via Imageon FMC 5
Figure 5: hdmi_out serves for output of Full HD HDMI to display via Imageon FMC 5
Figure 6: vdma serves for video dma in/out to/from 8 Full HD video frame buffers in DDR4 .. 5
Figure 7: RGPIP serves measurement of externally generated clock frequency. 6
Figure 8: The SW source code ...14
Figure 9: HW generated by the SDSoC 2018.2 compiler for matrix mult and add example ..15
Figure 10: HW Accelerated matrix multiplication and add ...16
Figure 11: LK DOF in HW with standard DMAs. Full HD HDMI video I/O17
Figure 12: LK Dense Optical Flow input movie Full HD HDMI video 60fps18
Figure 13: HW accelerated LK DOF input/output Full HD HDMI 60 fps18
Figure 14: Provider of the temperature of the Zynq Ultrascale+chip, response to requests. .25
Figure 15: Consumer output of the temperature of the Zynq Ultrascale+ chip25

Table of Tables
Table 1: tools with a corresponding package name. .. 8
Table 2: Performance of HW accelerated LK FOF and load Arm A53 processors.19

Acknowledgement

This work has been partially supported from project FitOptiVis, project number ECSEL
783162 and the corresponding Czech NFA (MSMT) institutional support project 8A18013.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

1/27

1 Introduction
This application note describes FitOptiVis design time and run time resources supporting the
Zynq Ultrascale+ board and Xilinx SDSoC 2018.2 system level compiler.

The concrete board is Zynq Ultrascale+ TE0808-03-15EG-1EE [1]. It works with large Xilinx
XCZU15EG-1FFVC900E device with the quad core Arm A53 64 bit, dual Arm Cortex R5 and
programmable logic area on single 16nm chip. See Figure 1.

Figure 1: TE0808-03-15EG-1EE on TEBF0808-04 carrier with Imageon HDMI I/O FMC

The Zynq Ultrascale+ module has the 52 x 76 mm form factor. The Zynq Ultrascale+ board is
designed and manufactured by company Trenz Electronic [1].

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/27

Figure 2: The Zynq Ultrascale+ TE0808-03-15EG-1EE module and RaspberryPi 3B

2 Create SDSoC platform for Zynq Ultrascale+ board
The Xilinx SDSoC 2018.2 compiler requires preparation of SDSoC platform. It is specific
Vivado 2018.2 design with metadata, enabling to the SDSoC 2018.2 LLVM system level
compiler to add additional HW accelerator blocks and data movers on top of the initial Vivado
design. See Figure 3. The additional HW accelerator blocks are defined as C/C++ user
defined functions. These functions can be compiled, debugged and executed in Petalinux
user space on ARM A53. But in addition, the selected C/C++ functions can be compiled also
to form of Vivado HLS HW accelerators. Blocks are compiled by the Vivado HLS compiler
and automatically interfaced with dedicated data movers like DMA or SG DMA. See Figure 9.

The resulting compiled system remains compatible with related FitOptiVis run time
resources, specifically the 64bit Debian OS and the local cloud Ethernet communication of
C++ clients via the Arrowhead framework (result of ECSEL Productive 4.0 project) [2].

Creation of the board support package requires installation of the Xilinx SDSoC 2018.2 tool
on your PC. Use the SDSoC 2018.2 web installer for Win7 or Win 10 (64bit) from:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-
development-environments/2018-2.html

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/2018-2.html

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/27

The full SDSoC 2018.2 license is required for this large device. The Vivado 2018.2 Web pack
license is not sufficient. Contact Xilinx to purchase the SDSoC license.

We will use the FitOptiVis WP3 Design time resource – the Zynq Ultrascale+ board
support package generation project included in the evaluation package accompanying this
application note. The board support package generation project serves for generation of the
board support package for the TE0808-03-15EG-1EE module on TEBF0808-04 HW carrier
with Video I/O. The board support package provides all necessary files needed for the Xilinx
SDSoC 2018.2 compiler. The compiler needs this board support package to be able to
compile selected C/C++ Arm A53 functions into HW accelerators and the corresponding bit-
stream for the programmable part of the design. The board support package includes all
necessary information for preparation of the low level SW support for the preconfigured and
precompiled Petalinux 2018.2 kernel and for the precompiled Debian 9.8 “Stretch” image for
the for the TE0808-03-15EG-1EE module on TEBF0808-04 HW carrier with Video I/O.

Image files included in this evaluation package can be used for quick first evaluation of the
development flow of the SDSoC 2018.2 platform. Configurations and compilations of the
Petalinux 2018.2 kernel and the Debian 9.8 “Stretch” image are described in Chapters 3 and
4.

To prepare the Zynq Ultrascale+ SDSoC board support package for the TE0808-03-15EG-
1EE module on TEBF0808-04 HW carrier with Video I/O follow these steps:

1. Unpack the enclosed evaluation package
TE0808_SDSoC_HIO2.zip
to Win 7 or Win10 directory of your choice. We will use:
c:\TS82\TE0808_SDSoC_IMAGEON_FMC_HDMI_701HDMI\

It will create zusys folder.
2. On Win 7 or Win10, open dos terminal window, change directory to the zusys folder

and create an initial setup:
cd c:\TS82\TE0808_SDSoC_HIO2\zusys

_create_win_setup.cmd
Select option (1) to create maximum setup of CMD-Files and to exit.
Set of scripts is created in the zusys folder.
To overcome limitations of Win 7 and Win10 related to the need of short directory
paths, use the script _use_virtual_drive.cmd to create a virtual short path to your
directory drive X:\zusys Type:
_use_virtual_drive.cmd
Select X as name of the virtual drive and select (0) to create the virtual drive.
Go to the created virtual short-path directory by:
X:

cd zusys

3. Use text editor of your choice and open and modify script design_basic_settings.sh
Select correct path to SDSoC 2018.2 tool installed on your Win7 or Win10. Line 38:
@set XILDIR=C:/Xilinx
Select proper Xilinx device. Line 48:
@set PARTNUMBER=15
The selected number corresponds to the number defined in file
X:\zusys\board_files/TE0808_board_files.csv
Verify, if line 78 sets the SDSoC flow support by: ENABLE_SDSOC=1

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/27

@set ENABLE_SDSOC=1

4. Start the Xilinx Vivado 2018.2 and create the design by executing of the script:
X:\zusys\vivado_create_project_guimode.cmd

Figure 3 shows block design of the created system. It includes 4 HW reset IPs for
future HW accelerators with system clocks 25 MHz, 100 MHz, 150 MHz and 287.5
MHz.
The DDR4 interface and the connections to the USB ports for keyboard, mouse and
1Gbit Ethernet are all pre-configured inside of the Vivado Zynq Ultrascale+ block
zynq_ultra_ps_e_0.

5. To build the Vivado 2018.2 design, use the TCL script provided within the board
support package. From the Vivado TCL console execute command:
TE::hw_build_design -export_prebuilt

After the compilation, new hardware description file zusys.hdf is generated in folder:
X:\zusys\prebuilt\hardware\4ev_1e\zusys.hdf

Copy the thre precompiled files from the enclosed evaluation package to:
X:\zusys\prebuilt\os\petalinux\default\image.ub

X:\zusys\prebuilt\os\petalinux\default\u-boot.elf

X:\zusys\prebuilt\os\petalinux\default\bl31.elf

Figure 3: The initial Vivado design. It defines the SDSoC 2018.2 platform.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/27

Figure 4: hdmi_in serves for input of Full HD HDMI from camera via Imageon FMC

Figure 5: hdmi_out serves for output of Full HD HDMI to display via Imageon FMC

Figure 6: vdma serves for video dma in/out to/from 8 Full HD video frame buffers in DDR4

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/27

Figure 7: RGPIP serves measurement of externally generated clock frequency.

The hierarchical blocks of Figure 3 described in Figure 4 - Figure 7 form the Full HD video in/out
support of the platform.

Platform has one full HD HDMI video input via the Imageon FMC. It serves for video input for
the HW accelerated video processing algorithms working on 8 Full HF video frame buffers
reserved in the DDR4.

Platform has one Full HD HDMI video output via the Imageon FMC. It serves for video output
for the HW accelerated video processing algorithms working on 8 Full HD video frame
buffers reserved in the DDR4.

Platform has second Full HD HDMI video output via the HDMI connector on the TE0701
carrier board. It serves for Debian video output from single separate Full HD video frame
buffer reserved in the DDR4.

All these subsystems will be present in each demo compiled by the created SDSoC 2018.2
platform. The VDMA subsystems can be controlled by user from the user-space SW running
on top of the appropriately configured PetalLinux 2018.2 kernel and Debian 9.8 “Stretch”
operating system. These configurations/compilations are described in next two sections.

3 Configuration of the PetaLinux 2018.2
The configuration and compilation of the Petalinux 2018.2 kernel and Debian 9.8 Stretch
image as the FitOptiVis run time resource for the Zynq Ultrascale+ module TE0808-03-
15EG-1EE is described now. The configuration is performed on the Ubuntu 16.04 LTS.

We used the VMware Workstation 14 Player on Win7 or Win10 PC with Intel i7 CPU (8
processors, 16 GB RAM). We use configuration of the VM machine with allocated 6
processors and 8 GB of RAM for the Ubuntu 16.04 LTS. It results in fast compilation of the
PetaLinux 2018.2 kernel.

The Petalinux 2018.2 distribution can be downloaded to the Ubuntu 16.04 LTS from
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedde
d-design-tools/2018-2.html

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2018-2.html

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/27

and installed to the default Ubuntu directory:
/opt/petalinux/petalinux-v2018.2-final
The standard PetaLinux 2018.2 distribution requires few modifications.

1. Copy to the Ubuntu OS all content of these to Win7 or Win 10 directories:
X:\zusys\prebuilt

X:\zusys\os

to Ubuntu directories:
/home/devel/work/TS82/TE0808/zusys/os

/home/devel/work/TS82/TE0808/zusys/prebuilt

2. In Ubuntu, open linux terminal window and set path to the PetaLinux 2018.2:
source /opt/petalinux/petalinux-v2018.2-final/settings.sh

3. Go to the directory copied from the evaluation package with pre-defined configuration
for the Zynq Ultrascale+ module TE0808-03-15EG-1EE:
cd /home/devel/work/TS82/TE0808/zusys/os/petalinux

It contains a predefined configuration according to Zynq Ultrascale+ board
requirements.

4. The HDF file created (see chapter 3) in Win7 or Win 10 in Vivado 2018.2 tool is
present in the Ubuntu folder:
/home/devel/work/TS82/TE0808/zusys/prebuilt/hardware/4ev_1e/zusys.hdf

5. Load the HDF to current configuration by PetaLinux command (on single line):

petalinux-config --get-hw-description=/home/devel/work/TS82/TE0808/
zusys/prebuilt/hardware/4ev_1e

6. Test if the PetaLinux filesystem location is changed from the ramdisk to the extra

partition on the SD card, select:
Image Packaging Configuration --->

 Root filesystem type (SD card) --->

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/27

7. Test if option to generate boot args automatically is disabled and if user defined
arguments are set to:

earlycon clk_ignore_unused root=/dev/mmcblk1p2 rootfstype=ext4 rw
rootwait quiet

Leave the configuration, 3x Exit and Yes.

8. To build PetaLinux, from the bash terminal execute PetaLinux command:
petalinux-build

9. Files image.ub, u-boot.elf and bl31.elf are created in:
/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/image.ub

/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/bl31.elf

4 Configuration of the Debian 9.8
The file system is based on the latest stable version of Debian 9.8 Stretch distribution (03.
25. 2019). Follow the steps below.

1. Copy the mkdebian.sh file from this evaluation package distribution to the PetaLinux
folder.
/home/devel/work/TS82/TE0808/zusys/os/petalinux/mkdebian.sh

2. Go to the folder with PetaLinux:
cd /home/devel/work/TS82/TE0808/zusys/os/petalinux

3. The 64bit Debian image will be created by execution of the mkdebian.sh script. The
script checks all the tools that are needed to create the image, most of them are a
standard part of the Ubuntu 16.04 LTS distribution.
When some of them are missing, install them by:
sudo apt install Package

Table 1: tools with a corresponding package name.

Tool Package
dd coreutils
losetup mount
parted parted
lsblk util-linux
mkfs.vfat dosfstools
mkfs.ext4 e2fsprogs
debootstrap debootstrap
gzip gzip
cpio cpio
chroot coreutils
apt-get apt
dpkg-reconfigure debconf
sed sed
locale-gen locales
update-locale locales
qemu-arm-static qemu-user-static

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/27

4. Create the Debian image. It will consist of two partitions.

The file system of the first one will be FAT32. This partition is dedicated for image of
the PetaLinux kernel. The second partition will contain the Debian using EXT4 file
system. Create the Debian image from the external Ethernet repositories by this
command:
chmod ugo+x mkdebian.sh

sudo ./mkdebian.sh

During the creation procedure, you will be asked to set language. Choose English
(US). The resultant image file will be called TE0808-debian.img, its size will be 7 GB.

This step can take some time. It depends on the host machine speed and speed of
the internet connection.

5. Compress the created image to file TE0808-debian.zip:
zip TE0808-debian TE0808-debian.img

6. Copy compressed image file from Ubuntu
/home/devel/work/TS82/TE0808/zusys/os/petalinux/TE0808-debian.zip

to Win7 or Win 10 file:
X:\zusys\prebuilt\os\petalinux\default\TE0808-debian.zip

7. Copy these files from Ubuntu
/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/image.ub
/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/u-boot.elf

/home/devel/work/TS82/TE0808/zusys/os/petalinux/images/linux/bl31.elf

to Win7 or Win 10 files:
X:\zusys\prebuilt\os\petalinux\default\image.ub

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/27

X:\zusys\prebuilt\os\petalinux\default\u-boot.elf

X:\zusys\prebuilt\os\petalinux\default\bl31.elf

8. In Ubuntu, clean Petalinux project files
petalinux-build -x mrproper

9. In Ubuntu, delete files
/home/devel/work/TS82/TE0808/zusys/os/petalinux/TE0808-debian.zip

/home/devel/work/TS82/TE0808/zusys/os/petalinux/TE0808-debian.img

10. In Ubuntu, close all applications and shut down.
11. In Win7 or Win 10, close the VMware Workstation Player 14.

You can continue with preparation of the Zynq Ultrascale+ board with created files:

• Petalinux kernel image image.ub
• Compressed Debian image te0808-debian.zip
• U-boot program u-boot.elf
• Support firmware bl31.elf

This ends configuration and compilation step for the Petalinux and Debian.

5 Create the final SDSoC 2018.2 platform package
1. In the open Vivado 2018.2 console, create and compile the initial BOOT.bin file and

the initial SW modules by execution of the command:
TE::sw_run_hsi

The resulting BOOT.bin file will be located in the folder
X:\zusys\prebuilt\boot_images\15eg_1eb_sk\u-boot\BOOT.bin

2. In Vivado 2018.2 console, create the SDSoC platform by execution of the command:
TE::ADV::beta_util_sdsoc_project

The SDSoC 2018.2 platform will be generated in the directory
X:\SDSoC_PFM\TE0808-04\15EG-1EE

The platform it is also packed into a ZIP file in the directory
X:\SDSoC_PFM\TE0808-04\

This ends the configuration and compilation steps needed for the initial generation of the
SDSoC 2018.2 platform for the TE0808-03-15EG-1EEA module on TEBF0808-04 carrier.

Platform created in chapters 1 – 5 is used in all demos described in next sections of this
application note.

6 Compile HW accelerator by the SDSoC 2018.2 compiler
Simple matrix multiplication-and-addition application is coded in C and compiled by the
SDSoC 2018.2 compiler into HW accelerator for the platform defined in Chapters 5.

1. On Win 7 or Win10, cancel the current virtual drive X: by executing from the currently
open command line:
_use_virtual_drive.cmd

and type response:
1

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/27

2. Change directory to
C:\TS82\TE0808\TE0808_SDSoC_HIO2\SDSoC_PFM\TE0808-04\15EG-1EE

3. On Win 7 or Win10, open dos terminal window and execute copy of the script
_use_virtual_drive.cmd to create a new virtual short path to get short SDSoC
directory X:\15EG-1EE
_use_virtual_drive.cmd
Select X as name of the virtual drive and type
0
to create the virtual drive.
Change directory to the created X:\15EG-1EE directory:
X:

cd 15EG-1EE

4. Open SDSoC 2018 tool in the directory
X:\15EG-1EE

5. Create new linux target project named
te30_l

6. Select platform:
X:\15EG-1EE\zusys

7. Select template project
X:\15EG-1EE\zusys\samples\z_is_a_times_b_direct_connect

and compile it for the Release target with all clocks set to 187,5 MHz.
. This example will accelerates in HW the int32 matrix operation:

D[400,400] = A[400,400] * B[400,400] + C[400,400]
in the programmable logic of the Zynq Ultrascale+ device.

8. The SDSoC 2018.2 compiler will create these relevant results in the sd_card
directory:
X:\15EG-1EE\te30_l\Release\sd_card\BOOT.BIN

X:\15EG-1EE\te30_l\Release\sd_card\te30_l.elf

9. Unzip the preconfigured and precompiled Debian image for the Zynq Ultrascale+
board from the evaluation package file: TE0808-debian.zip to file TE0808-debian.img.

10. Use the Win32DiskImager https://sourceforge.net/projects/win32diskimager/ for
creation of the image TE0808-debian.img on the SD card. Use 8GB SD card with
speed grade 10.

11. Copy to the root of the SD card the HW accelerated matrix multiplication demo
executable te30_l.elf and the corresponding BOOT.BIN file:
X:\15EG-1EE\te30_l\Release\sd_card\BOOT.BIN

X:\15EG-1EE\te30_l\Release\sd_card\te30_l.elf

The BOOT.BIN file contains the first stage boot loader, the u-boot and the bitstream
with the platform design extended by the HW accelerator for matrix multiplication and
addition. Application te30_l.elf requires that the Zynq Ultrascale+ device is booted
with the corresponding BOOT.bin file. That is why you have to copy both related files.

12. Remove DS card from PC and insert it to the Zynq Ultrascale+ board.
13. Connect the Zynq Ultrascale+ board to the Ethernet cable.
14. Connect Full HD HDMI video source to the video input HDMI connector of the FMC

Imageon card.
15. Connect Full HD HDMI display to the video output HDMI connector of the FMC

Imageon card.

https://sourceforge.net/projects/win32diskimager/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/27

16. Connect 4K display to the video output DisplayPort connector of the TEBF0808
carrier board. It will provide the Debian desktop GUI.

17. Connect mouse and keyboard to USB connectors of the TEBF0808 carrier board. It
will serve for the Debian desktop GUI input.

18. On PC, you can use the putty terminal (download from: https://www.putty.org/).
19. Connect the Zynq Ultrascale+ board with your PC via mini USB cable. The mini USB

cable supports two connections, the programming JTAG interface and the console.
Use putty or similar terminal client with speed (baud) 115200 bps, data bits 8, stop
bits 1, parity none and flow control none. The actual COM port number associated
with your connection can be found by the Win7 or Win10 Device manager utility.

20. Connect the 12V power supply. The TEBF0808 carrier board is in a stand-by mode.
The blue led in the power-on button is blinking and the fan is not running.

21. Press the power-on button to switch the power-on. The fan is running.
22. Press the reset button on TEBF0808 carrier board.
23. The Zynq Ultrascale+ board will start booting process from the SD card. The first

stage boot loader (fsbl) program is executed first. It starts the u-boot program. The u-
boot program configures the Arm Cortex A9 processing system and boots the
preconfigured and precompiled Petalinux image.ub image from the SD card with text
output to the serial line terminal. The Debian file system is present on the separate
partition of the SD card.

24. Login as user:
root

Password:
root

25. Find and write down the Ethernet IP address for IP V4 and IP V6 address assigned
by the DHCP server by typing command on the console:
ifconfig

26. The Full HD screen is opened text console on the 4K monitor connected to the video
output DisplayPort connector of the TEBF0808 carrier board. Use the USB keyboard
and login as:
root

Password:
root

Type:
startx&

The graphical Debian desk-top GUI will open automatically on the 4K monitor with
Full HD resolution (1920x1080p60). The USB keyboard and the USB mouse can be
used to control the Debian desk-top.

27. The HW accelerated matrix multiplication demo can be executed on the Zynq
Ultrascale+ module from the automatically mounted SD card by executing this
command.
/boot/te06_l.elf

28. The HW acceleration measured by the number of Arm A9 clock cycles. See Figure 10.
29. To shut down properly the Debian type from the console terminal:

halt

The Debian OS is properly shut down and all possibly open R/W to the SD card are
closed. Pres the button with blue led to switch-off power.

https://www.putty.org/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/27

The SDSoC 2018.2 compiler have created and compiled new HW accelerator to the
programmable logic part of the device from the C++ source code mmult.cpp. It accelerates
int32 matrix operation: D[400,400] = A[400,400] * B[400,400] + C[400,400] .
See the listing of mmult.cpp:

#include "mmult.h"

// Computes matrix addition

// Out = (out + in3) , where a direct connection establishes between the

// HLS kernels for the access of "out"(A X B)

void madd_accel(

 const int *mmult_in, // Read-Only Matrix

 const int *in3, // Read-Only Matrix 3

 int *out, // Output matrix

 int dim // Size of one dimension of the matrices

)

{

 // Performs matrix addition over output of (A x B) and In3 and

 // writes the result to output

 write_out: for(int j = 0; j < dim * dim; j++) {

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=1 max=160000

 out[j] = mmult_in[j] + in3[j];

 }

}

// Computes matrix multiplication

// out = (A x B) , where A, B are square matrices of dimension (dim x dim)

void mmult_accel(

 const int *in1, // Read-Only Matrix 1

 const int *in2, // Read-Only Matrix 2

 int *out, // Output Result

 int dim // Size of one dimension of the matrices

)

{

 // Local memory to store input and output matrices

 // Local memory is implemented as BRAM memory blocks

 int A[MAX_SIZE][MAX_SIZE];

 int B[MAX_SIZE][MAX_SIZE];

 #pragma HLS ARRAY_PARTITION variable=A dim=2 complete

 #pragma HLS ARRAY_PARTITION variable=B dim=1 complete

 // Burst reads on input matrices from DDR memory

 // Burst read for matrix A, B and C

 read_data: for(int itr = 0 , i = 0 , j =0; itr < dim * dim; itr++, j++){

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=160000 max=160000

 if(j == dim) { j = 0 ; i++; }

 A[i][j] = in1[itr];

 B[i][j] = in2[itr];

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/27

 }

 // Performs matrix multiply over matrices A and B and stores the result

 // in "out". All the matrices are square matrices of the form (size x size)

 // Typical Matrix multiplication Algorithm is as below

 mmult1: for (int i = 0; i < dim ; i++) {

 #pragma HLS LOOP_TRIPCOUNT min=1 max=400

 mmult2: for (int j = 0; j < dim ; j++) {

 #pragma HLS PIPELINE

 #pragma HLS LOOP_TRIPCOUNT min=1 max=400

 int result = 0;

 mmult3: for (int k = 0; k < DATA_SIZE; k++) {

 #pragma HLS LOOP_TRIPCOUNT min=1 max=400

 result += A[i][k] * B[k][j];

 }

 out[i * dim + j] = result;

 }

 }

}

Figure 8: The SW source code
The generated HW design is interfaced to the modified user C++ source code. SW is
compiled into te30_l.elf file to run as process in user space of the Debian OS with the
Petalinux 2018.2 kernel on the Zynq Ultrascale+ board.

The design includes the two Vivado HLS HW accelerators for matrix (400x400 int32)
multiplication and for matrix (400x400 int32) addition. Both accelerators operate at 187.5
MHz system clock. Both accelerators are directly connected in HW and complemented with
automatically instantiated DMA data-movers.

The corresponding bitstream has been compiled to the BOOT.BIN file and the modified SW
for the application te30_l.elf file. The generated HW respects the initial board support
package constrains and fits to the Zynq Ultrascale+ TE0808-03-15EG-1EE module.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/27

Figure 9: HW generated by the SDSoC 2018.2 compiler for matrix mult and add example

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/27

Figure 10: HW accelerated matrix multiplication and add

The measured HW acceleration is 282x in comparison to the optimized SW computation on
the 1.05 GHz Arm A53 processor. See Figure 10.

7 Video processing demo with Full HD HDMI Video In/Out
The complete demo performing video processing with HW acceleration is described in this
section. We demonstrate the LK Dense Optical Flow (LK DOF) algorithm with Full HD HDMI
video input and video output.

The algorithm works with two subsequent Full HD frames. It computes for each pixel of the
frame vector characterizing the direction and the speed of movement of a given pixel relative
to its background.

The LK Dense Optical Flow algorithm involves massive fixed point computation and also
floating point matrix inversion computed for each pixel of the frame.
The fixed point moving sum of the pixel background is computed for a square area 53x53
pixel. Computation is performed for each pixel of each video frame.

Figure 11 presents HW implementation generated by the SDSoC 2018.2 compiler from C++
algorithm definition SW with standard DMA engines for video In/Out data transfer. Two DMA
engines serve for parallel read of two subsequent video frames from the DDR4 video frame
buffers.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/27

The third DMA serves for writing of resulting frames with movement vectors to the DDR4
video frame buffer for the display of results. All three DMA engines use pooling and therefore
one of A53 is busy. Alternative SG DMA design works with interrupt based drivers and
therefore the used Arm 53 (one of 4 cores) is not 100% busy by the pooling. See Figure 11.
The highlighted interrupt lines are connected to the Video DMA engines. The VDMA is part of
the initial platform and serves for the Full HD HDMI 60fps video in and the Full HD HDMI
60fps video out via the Imageon FMC card.

Figure 11: LK DOF in HW with standard DMAs. Full HD HDMI video I/O
The Display Port HW support is instantiated in the ZYNQ Ultrascale+ module. It is used for
the Full HD 60 fps Debian desk-top.

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/27

Figure 12: LK Dense Optical Flow input movie Full HD HDMI video 60fps

Figure 13: HW accelerated LK DOF input/output Full HD HDMI 60 fps

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/27

Figure 12 and Figure 13 present set-up for computation of the LK Dense Optical Flow input
movie with Full HD HDMI input 60 FPS from the PC and output in Full HD HDMI to the HDMI
monitor. See Table 2 summarizing the performance of HW accelerated implementation and
also the load of two most utilized Arm A53 processors.

Table 2: Performance of HW accelerated LK FOF and load Arm A53 processors.

LK DOF algorithm with per
pixel integral tile size [53x53]

Frames per
second

A53 SDSoC
CPU load

A53 DeskTop
CPU load

Acceleration
of LK DOF

In SW 0.0907 100% 3% 1x
In HW DMA 60 100% 80% 661x
In HW SG DMA 60 30% 80% 661x

The C++ source code of the used LK Dense Optical Flow algorithm SW is in these folders:

X:\4EV-1EA\zusys\samples\optical_flow_dma\

X:\4EV-1EA\zusys\samples\optical_flow_sgdma\

X:\4EV-1EA\zusys\samples\optical_flow_sw\

This ends short presentation of the HW acceleration of relatively complex video processing
algorithm with HW acceleration 661x over the same algorithm implemented on 1.05 GHz
Arm A53 processor. This acceleration is reached with design using only:
15% of BRAM (block rams) of the PL logic and no ULTRA RAM)
14% of CLB (logic block tiles)
 2% of DSP resources
This indicates the potential of the large TE0808-03-15EG-1EE module in the area of video
processing algorithm acceleration.

8 Inter-cloud connectivity based on the Arrowhead framework
The FitOptiVis (WP4) run-time resources are supported for the Zynq Ultrascale+ module
TE0808-03-15EG-1EE by SW implementation of the Arrowhead framework compatible
clients on the 64 bit Arm Cortex A53 processor. The Arrowhead framework [3] has been
developed within ECSEL Arrowhead project and Productive4.0 projects
https://productive40.eu/.

In FitOptiVis WP4, we support as an SW design time resource the Arrowhead framework for
board to board Ethernet communication in the local cloud.

The Arowhead famework works on one RaspberryPi 3B (RPi3) board. The RPi3 implements
the Arrowhead framework as set of Java services. See documentation in [3]. The Zynq
Ultrascale+ module TE0808-03-15EG-1EE hosts C++ provider capable to measure the
actual temperature of the Xilinx XCZU4EV-1SFVC784E device. The Zynq Ultrascale+ in
module can also hosts C++ Consumer application capable to ask the Arrowhead framework
about the temperature provided as service by the producer service running as separate
process on the Zynq Ultrascale+ module.

https://productive40.eu/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/27

9 Installation of Arrowhead Framework Services on RPi3
The Arrowhead client SW acts as the Producer providing a service or as a Consumer
requesting the service via the Arrowhead framework. The base hardware platform for the
Zynq Ultrascale+ module is compiledas described in Chapter 2 - 6.

Testing and running of the Arrowhead C++ clients on Zynq Ultrascale+ boards requires
Ethernet access to the Arrowhead framework services. It is recommended to use the
precompiled image for the RPi3 board. It includes already installed and configured
Arrowhead framework G4.0 lightweight implementation. The image is available as one of
results of the work package WP1 of the running ECSEL JU project Productive4.0
https://productive40.eu/. It is accessible for all Productive4.0 consortium project partners.
Please contact coordinator of the consortium for further information about the access to the
Arrowhead-framework G4.0 light-weight installation running on the RPi3 board. After
receiving the access to the download, unzip the three downloaded files Arrowhead-40-
raspi.z01, Arrowhead-40-raspi.z02 and Arrowhead-40-raspi.zip into the final image file
image_180626.img (size 3.711.959.040 Bytes).

Copy the RPi3 image image_180626.img to (at least) 4GB SD card (speed grade 10). You
can use the Win32DiskImager utility from: https://sourceforge.net/projects/win32diskimager/ .

Connect the RPi3 to USB keyboard, HDMI monitor with inserted SD card. Connect it to
Ethernet with the DHCP server. Power ON the board by connecting the 5V power supply via
micro USB cable. Power can be provided from the PC via the USB port or, preferably, from
the dedicated 5V power supply. Details of the installation and use are described in Chapter 8
of App. note [6].

10 Install Arrowhead-f support on Zynq Ultrascale+ module
At this stage, the Debian OS configured for the Zynq Ultrascale+ module TE0808-03-15EG-
1EE can be upgraded to become compatible with the Arrowhead framework G4.0 client and
provider C++ demo applications. Details of the installation and use are described in Chapter
9 of App. note [6].

11 Install Arrowhead-f C++ Provider on Zynq Ultrascale+ module
The Arrowhead ProviderExample can be compiled and tested on the same Zynq Ultrascale+
module. Details of the installation and use are described in Chapter 10 of App. note [6]. Start
the compiled ProviderExample:
./ProviderExample

The ProvidedExample registers itself in the Arrowhead framework database running on the
RPi3 board. On Consumer request, it returns an artificial temperature, fixed to value 26
degrees Celsius, at this first installation stage.

12 Install Arrowhead-f C++ Consumer on Zynq Ultrascale+ module
The Arrowhead ConsumerExample can be compiled and tested on the same Zynq
Ultrascale+ module. Details of the installation and use are described in Chapter 11 of App.
note [6]. Run the compiled ConsumerExample:
./ConsumerExample

The program should show the following response from the ProviderExample:

https://productive40.eu/
https://sourceforge.net/projects/win32diskimager/

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/27

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":
"this_is_the_sensor_id","bu": "Celsius"}

The ConsumerExample might fail in the very first instance of the Database use. The
database of the Arrowhead-f running on the RPi3 has to be configured. The
ProviderExample and the ConsumerExample have to be connected by the operator of the
Databaze. Modification of the Arrowhead Database.
The Arrowhead framework running on the RPi3 board provides phpMyAdmin interface to
control the Database. To allow the ConsumerExample to get the ProducerExample service
response, follow steps described in Chapter 12 of App. note [6].

The ConsumerExample should get the proper response from the ProviderExample, now.

13 Test the Zynq Ultrascale+ Consumer and Producer

The ProducerExample server is running on the “Producer” Zynq Ultrascale+ module.

Execute the ConsumerExample client example on the “Consumer” Zynq Ultrascale+ module.
./ConsumerExample

The ConsumerExample client example program should show the modelled constant
temperature response (26.0) from the ProviderExample and exit.

Provider Response:

{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn":
"this_is_the_sensor_id","bu": "Celsius"}

14 Producer with real temperature measurement on Zynq
Ultrascale+ module

Real temperature of the Xilinx chip of the “producer” Zynq Ultrascale+ module can be
measured by modified ProviderExample.cpp code.

This is modified source code of the ProviderExample.cpp code. It measures and provides the
temperature of the Zynq Ultrascale+ chip to the Arrowhead framework:

#pragma warning(disable:4996)

#include "SensorHandler.h"

#include <sstream>

#include <string>

#include <stdio.h>

#include <thread>

#include <list>

#include <time.h>

#include <iomanip>

#ifdef __linux__

 #include <unistd.h>

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/27

#elif _WIN32

 #include <windows.h>

#endif

#define TEMP_RAW_FILE
"/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_raw"

#define TEMP_OFFSET_FILE
"/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_offset"

#define TEMP_SCALE_FILE
"/sys/bus/iio/devices/iio:device0/in_temp0_ps_temp_scale"

bool bSecureProviderInterface = false; //Enables HTTPS interface on the
application service (with token enabled)

bool bSecureArrowheadInterface = false; //Enables HTTPS interface towards
ServiceRegistry AH module

inline void parseArguments(int argc, char* argv[]){

 for(int i=1; i<argc; ++i){

 if(strstr("--secureArrowheadInterface", argv[i]))

 bSecureArrowheadInterface = true;

 else if(strstr("--secureProviderInterface", argv[i]))

 bSecureProviderInterface = true;

 }

}

int main(int argc, char* argv[]){

 printf("\n=============================\nProvider Example -
v%s\n=============================\n", version.c_str());

 parseArguments(argc, argv);

 SensorHandler oSensorHandler;

 std::string measuredValue; //JSON - SENML format

 time_t linuxEpochTime = std::time(0);

 std::string sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

 FILE *f_t_raw, *f_t_off, *f_t_scale;

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 if ((f_t_off = fopen(TEMP_OFFSET_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if ((f_t_scale = fopen(TEMP_SCALE_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

 printf("OK\n");

 int t_raw;

 int t_off;

 float t_scale;

 fscanf(f_t_raw, "%d", &t_raw);

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/27

 fscanf(f_t_off, "%d", &t_off);

 fscanf(f_t_scale, "%f", &t_scale);

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 printf("OK\n");

 if (fclose(f_t_off) == EOF) {

 printf("Cannot close file %s \n", TEMP_OFFSET_FILE);

 return -1;

 }

 if (fclose(f_t_scale) == EOF) {

 printf("Cannot close file %s \n", TEMP_SCALE_FILE);

 return -1;

 }

 float value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

 std::ostringstream streamObj;

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 std::string sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

 oSensorHandler.processProvider(
 measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

 while (true) {

 linuxEpochTime = std::time(0);

 sLinuxEpoch = std::to_string((uint64_t)linuxEpochTime);

 if ((f_t_raw = fopen(TEMP_RAW_FILE, "r")) == NULL) {

 printf("Cannot open file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 fscanf(f_t_raw, "%d", &t_raw);

 if (fclose(f_t_raw) == EOF) {

 printf("Cannot close file %s \n", TEMP_RAW_FILE);

 return -1;

 }

 value = ((float)(t_raw + t_off) * t_scale) / 1000.00f;

 printf("Zynq Temp : %f °C\n", value);

 streamObj.clear();

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/27

 streamObj.str("");

 streamObj << std::fixed;

 streamObj << std::setprecision(1);

 streamObj << value;

 sValue = streamObj.str();

 measuredValue =

 "{"

 "\"e\":[{"

 "\"n\": \"this_is_the_sensor_id\","

 "\"v\":" + sValue +","

 "\"t\": \"" + sLinuxEpoch + "\""

 "}],"

 "\"bn\": \"this_is_the_sensor_id\","

 "\"bu\": \"Celsius\""

 "}";

 oSensorHandler.processProvider(
 measuredValue, bSecureProviderInterface, bSecureArrowheadInterface);

 #ifdef __linux__

 sleep(1);

 #elif _WIN32

 Sleep(1000);

 #endif

 }

 printf("Close file %s ... ", TEMP_RAW_FILE);

 if (fclose(f_t_raw) == EOF) {

 printf("FAILED\n");

 return -1;

 }

 printf("OK\n");

 return 0;

}

All other files remain identical. Recompile the ProviderExample project by make.

Test the real temperature measurement compatible with the Arrowhead framework on the
Zynq Ultrascale+ module. Consumer can run on the same module as separate Debian
application or it can run on a ZynqBerry board connected to the local cloud as described in
described in the App. note [6].

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/27

Figure 14: Provider of the temperature of the Zynq Ultrascale+chip, response to requests.

Figure 15: Consumer output of the temperature of the Zynq Ultrascale+ chip

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/27

15 Package content
├── debian

│ ├── mkdebian.sh

│ ├── image.ub

│ ├── u-boot.elf

│ └── bl31.elf

└── zynq

 ├── TE0808_SDSoC_IMAGEON_FMC_HDMI_701HDMI.zip

 └── install-arrohead-cli-dep.sh

http://sp.utia.cz

© 2019 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/27

References
[1]

[2]

[3]

[4]

[5]

Trenz Electronic, "UltraSOM+ MPSoC Module with Zynq UltraScale+ XCZU15EG-
1FFVC900E, 4 GB DDR4", [Online].
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-MPSoC-Module-
with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4?c=450
Trenz Electronic, "TE0726 TRM," [Online].
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-
SDSoC-Voucher?c=350 .
Documents for Arrowhead Framework
Available:https://forge.soa4d.org/docman/?group_id=58
Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: Design Time and Run Time Resources
for the ZynqBerry Board TE0726-03M with SDSoC 2018.2 Support. UTIA application
note. [Online]. http://sp.utia.cz/index.php?ids=projects/fitoptivis
UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+ [Online].
https://shop.trenz-electronic.de/en/TEBF0808-04-UltraITX-Baseboard-for-Trenz-
Electronic-TE080X-UltraSOM?c=261

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by UTIA AV CR v.v.i.,
and to the maximum extent permitted by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE
CONTENT ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR
V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and

(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under or in connection with these materials, including for any direct, or any indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill,
or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been
advised of the possibility of the same.

Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any
application requiring fail-safe performance, such as life-support or safety devices or systems,
Class III medical devices, nuclear facilities, applications related to the deployment of airbags,
or any other applications that could lead to death, personal injury, or severe property or
environmental damage (individually and collectively, "Critical Applications"). Customer
assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product
liability.

	1 Introduction
	2 Create SDSoC platform for Zynq Ultrascale+ board
	3 Configuration of the PetaLinux 2018.2
	4 Configuration of the Debian 9.8
	5 Create the final SDSoC 2018.2 platform package
	6 Compile HW accelerator by the SDSoC 2018.2 compiler
	7 Video processing demo with Full HD HDMI Video In/Out
	8 Inter-cloud connectivity based on the Arrowhead framework
	9 Installation of Arrowhead Framework Services on RPi3
	10 Install Arrowhead-f support on Zynq Ultrascale+ module
	11 Install Arrowhead-f C++ Provider on Zynq Ultrascale+ module
	12 Install Arrowhead-f C++ Consumer on Zynq Ultrascale+ module
	13 Test the Zynq Ultrascale+ Consumer and Producer
	14 Producer with real temperature measurement on Zynq Ultrascale+ module
	15 Package content
	References
	Disclaimer

